Training on Statistical Data Analysis using R
R is an open-source programming language that provides a wide variety of statistical and graphical techniques. Ā R has ābecome the de-facto standard for writing statistical software among statisticians. This Training on Statistical Data Analysis using R will give you a solid foundation in creating statistical analysis solutions using the R language, and how to carry out a range of commonly used analytical processes.
TargetĀ ParticipantsĀ
This Training on Statistical Data Analysis using R is intended for Data Scientists, Data Analysts, Business Intelligence Analysts and any other professional who want to explore the vast range of analytical and graphical capabilities of R.
Course DurationĀ
OnlineĀ Ā 14Ā Days
Classroom-basedĀ Ā 10Ā Days
WhatĀ youĀ willĀ learnĀ Ā
ByĀ theĀ endĀ ofĀ thisĀ trainingĀ theĀ participantsĀ willĀ beĀ ableĀ toĀ learn:Ā
- AnĀ introductionĀ toĀ R,Ā basicĀ dataĀ types,Ā andĀ R/RStudioĀ installation
- OverviewĀ ofĀ baseĀ RĀ conceptsĀ andĀ specificĀ dataĀ wranglingĀ packagesĀ inĀ R
- ConnectingĀ toĀ databases,Ā executingĀ databaseĀ queriesĀ inĀ R
- HowĀ toĀ useĀ RĀ forĀ graphicalĀ summary
- RĀ programming
- HowĀ toĀ carryĀ outĀ aĀ rangeĀ ofĀ analysesĀ usingĀ R
IntroductionĀ toĀ StatisticalĀ AnalysisĀ
- ExplainĀ theĀ basicĀ stepsĀ ofĀ theĀ researchĀ process
- ExplainĀ differencesĀ betweenĀ populationsĀ andĀ samples
- ExplainĀ differencesĀ betweenĀ experimentalĀ andĀ non-experimentalĀ researchĀ designs
- ExplainĀ differencesĀ betweenĀ independentĀ andĀ dependentĀ variables
IntroductionĀ toĀ RĀ softwareĀ forĀ statisticalĀ computingĀ
- OverviewĀ ofĀ theĀ RĀ StudioĀ IDE
- Installing,Ā loadingĀ andĀ updatingĀ RĀ packages
- CreatingĀ objectsĀ inĀ R
- DataĀ types
- DataĀ structures
- SortingĀ vectorsĀ andĀ dataĀ frames
- DirectoryĀ managementĀ commands
- DirectĀ dataĀ entryĀ inĀ RĀ (forĀ smallĀ dataĀ sets)
- ImportingĀ dataĀ fromĀ otherĀ software
- DecisionĀ structuresĀ (if,Ā if-else,Ā if-elseĀ if-else)
- RepetitiveĀ structuresĀ (forĀ andĀ whileĀ loops)
- OtherĀ importantĀ programmingĀ functionsĀ (break,Ā next,Ā warn,Ā stop)
DataĀ WranglingĀ andĀ CleaningĀ inĀ RĀ
- WorkingĀ withĀ variables
- TransformĀ continuousĀ variablesĀ toĀ categoricalĀ variables
- AddĀ newĀ variablesĀ toĀ dataĀ frames
- HandlingĀ missingĀ values
- Sub-settingĀ dataĀ frames
- AppendingĀ andĀ mergingĀ dataĀ frames
- SpitĀ dataĀ frames
- StackĀ andĀ unstackĀ dataĀ frames
ExplanatoryĀ DataĀ AnalysisĀ (EDA)Ā inĀ RĀ
- CreatingĀ tablesĀ ofĀ frequenciesĀ andĀ proportions
- CrossĀ tabulationsĀ ofĀ categoricalĀ variables
- DescriptiveĀ statisticsĀ forĀ continuousĀ variables
DataĀ VisualizationĀ usingĀ RĀ baseĀ package
- IntroductionĀ toĀ graphsĀ andĀ chartsĀ inĀ R
- CustomizingĀ graphĀ attributesĀ (titles,Ā axes,Ā text,Ā legends)
- GraphsĀ forĀ categoricalĀ variables
- GraphsĀ forĀ continuousĀ variables
- GraphsĀ toĀ investigateĀ relationshipĀ betweenĀ variables
MeanĀ ComparisonĀ TestsĀ inĀ RĀ
- OneĀ SampleĀ TĀ Test
- IndependentĀ SamplesĀ TĀ Test
- PairedĀ SamplesĀ TĀ Test
- One-wayĀ analysisĀ ofĀ varianceĀ (ANOVA)
TestsĀ ofĀ AssociationsĀ inĀ R
- Chi-SquareĀ testĀ ofĀ independence
- Pearson'sĀ Correlation
- Spearman'sĀ Rank-OrderĀ Correlation
PredictiveĀ RegressionĀ ModelsĀ usingĀ RĀ
- LinearĀ Regression
- MultipleĀ LinearĀ Regression
- BinaryĀ LogisticĀ Regression
- OrdinalĀ LogisticĀ Regression
Ā
TrainingĀ ApproachĀ
This Training on Statistical Data Analysis using RĀ is delivered by our seasoned trainers who have vast experience as expert professionals using R programming language. The course is taught through a mix of practical activities, theory, group works and case studies.
Training manuals and additional reference materials are provided to the participants.
CertificationĀ
Upon successful completion of this Training on Statistical Data Analysis using R, participants will be issued with a certificate certified by the National Industrial Training Authority (NITA).
Tailor-MadeĀ CourseĀ
We can also do this as a tailor-made course to meet organization-wide needs. A training needs assessment will be done on the training participants to collect data on the existing skills, knowledge gaps, training expectations, and tailor-made needs.